

CAD Standards Manual

July 2018 Version 2 www.cleanwaterteam.com

THIS PAGE INTENTIONALLY LEFT BLANK

Part 1 -	General	5
1.1	Introduction	5
1.2	CAD Project Quality Assurance / Quality Control	5
1.3	Downloading and Installing Support Files	6
Part 2 -	General Requirements	7
2.1	Software Requirements	7
Part 3 -	File Format	9
3.1	Drawing Template	9
3.2	CAD Drawings	9
3.3	Plot Guidelines	9
Part 4 -	File Naming Conventions	11
4.1	Production Drawings	11
4.2	Reference Files	12
Part 5 -	Structure	15
5.1	Project Structure	15
5.2	Folder Structure	15
5.3	Sheet Set Manager	17
5.4	Sheet Structure	17
5.5	Model Space and Paper Space	18
5.6	Reference Files	18
5.7	Production Drawings:	19
5.8	Viewports	19
5.9	Drawing Annotation	19
5.10	Drawing Naming	20
5.11	Title Block	20
5.12	Scales and North Arrow	20
Part 6 -	Drawing Setup	22
6.1	Annotation	22
6.2	Object Linetypes	25
6.3	Symbology	26
6.4	Abbreviations	26
Part 7 -	Drawing Layers	28
7.1	Layer Naming	

7.2	Defpoints	30
7.3	Civil Objects	30
Part 8 -	Architectural, Structural, Mechanical and Electrical Standards	32
Part 9 -	Submittal Requirements	34
9.1	Submittal Requirements	34
9.2	Electronic Files	34
9.3	GIS Data Management (Under Development)	35
9.4	Reproduction	35
Appendix	A - Symbology	36
Appendix	B - Abbreviations	40
Appendix	C – Facility Codes	46

PART 1 - GENERAL

1.1 INTRODUCTION

This manual is a guide for consultants performing, or desiring to perform, engineering design and/or drafting services for the Clark County Water Reclamation District (District). Guidelines and examples presented in this manual will help consultants produce drawings that are consistent with the District's format, appearance, and professional standard. These standards are to be implemented in accordance with the requirements of the contract.

The purpose of this manual is to standardize drawing information and improve electronic data sharing between disciplines at the District and from consultants working for the District. It should not be considered a substitute for good communication between the team members involved. Effective communication between the consultant's staff and the District's engineering Project Manager, Project Engineer, and the CAD support staff, will help ensure production of concise, accurate and complete drawings – on schedule.

It is recognized that some work performed for the District may need to be submitted to other governmental agencies. Those submittals will need to conform to the reviewing agencies' standards. However, all submittals to the District must comply with this manual unless District staff grants an exemption.

1.2 CAD PROJECT QUALITY ASSURANCE / QUALITY CONTROL

As a long-term owner of public property, the District will utilize project documents for long-term operations and maintenance of the facility and as a starting point for future projects. As a result, the District expects a high level of accuracy in the prepared documents with a robust Quality Assurance / Quality Control (QA/QC) process used to ensure product quality.

At this time, the District expects to utilize 2D CAD drawing formats for procurement of construction services until the industry is better able to utilize Building Information Model (BIM) formats. Therefore, all drawings generated utilizing BIM technologies must also be thoroughly checked using a reliable QA/QC process prior to delivering 2D CAD drawings and associated models to the District.

A. CAD Projects Quality Assurance

Thoroughly check all drawings using a reliable QA/QC process prior to delivering them to the District. The drawings are typically checked to verify geometric accuracy such that all curves are tangent, elements are drawn on proper layers and on the correct coordinate system, and that additional requirements covered in this manual are met.

The Consultant shall provide sample electronic drawings to the District at various stages in the design process. Milestones for CAD file QA review by the District include:

- 1. Once the first drawing is set up that represents how all the drawings will be provided, the Consultant shall send the sample drawing (CAD file) to the District Project Engineer. This will allow the District to provide feedback at the start of the project to establish that this design guide is being followed.
- 2. At 30% Design Development, and at each subsequent submittal prior to the bid stage, the Consultant shall submit sample electronic drawings from each discipline, and from each sub-consultant, to the District Project Engineer to ensure that all CAD and reprographic standards are being met.

B. BIM Projects Quality Assurance

Modeling in three dimensions (3D) is not required. However, the District recognizes the value of these models and intends to implement procedures for 3D modeling of District projects at a future date.

1.3 DOWNLOADING AND INSTALLING SUPPORT FILES

A. The District standard design CAD drawings are available on the District website at <u>www.cleanwaterteam.com/engineering.html</u>.

PART 2 - GENERAL REQUIREMENTS

2.1 SOFTWARE REQUIREMENTS

All production design drawings must be completed using Autodesk software and of a version within 2 years of the most recent release at the signing of the contract. Any files converted from previous versions of AutoCAD, or from other formats, shall conform to the current District CAD Standards as outlined in this Manual.

- A. Drawing Setup
 - 1. The District utilizes the drawing setups outlined in this Manual for all CAD projects. The District will not accept drawings with alternate symbols, text height, font style, layer names and settings, or other deviations from the standards described herein without prior approval from the District Project Manager.
 - 2. Full size production drawings shall be 22"x34" (ANSI D). Half size drawings shall be produced at exactly one-half scale of the full size drawings, to 11"x17" (ANSI B).
 - 3. Unless otherwise approved by the District Project Manager, drawing title blocks shall be located along the right edge of each drawing.
 - 4. The North arrow shall point up or to the left. The District Project Manager must approve any deviation.
 - 5. All text is to be oriented to be read from the bottom and right, unless otherwise approved by the District Project Manager.
 - 6. Alignment stationing direction shall run from left to right on production drawings, unless otherwise approved by the District Project Manager.
 - 7. Drawing unit insertion scale shall be set to either "Unitless" or "U.S. Survey Feet".
 - 8. UCS shall be set to "World".
 - 9. The District allows the use of multiple layout tabs for Production Drawings. However, it is up to the consultant to provide files of a reasonable size. It is recommended that each file is limited to approximately ten (10) tabs within a single file. Files must use the maximum reasonable number of tabs to avoid an unnecessary number of separate files.

THIS PAGE INTENTIONALLY LEFT BLANK

PART 3 - FILE FORMAT

3.1 DRAWING TEMPLATE

- A. All .dwg files created for any District project must use the CCWRD CAD template.
- B. The latest version of the drawing template available at project start shall be used. The template includes layer names, annotation styles, standard District blocks, District line types, and object styles.

3.2 CAD DRAWINGS

- A. In addition to the standard template, the following standard design CAD drawings are available for download on the District website at <u>www.cleanwaterteam.com/engineering.html</u>, and shall be used for all District projects:
 - 1. Drawing Title Block
 - 2. Cover Page
 - 3. Abbreviations/Symbology
 - 4. District Notes

3.3 PLOT GUIDELINES

A. Named Plot Style

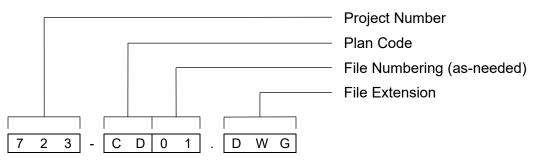
The District has created an AutoCAD Plot Styles Table file (CCWRD.stb) in order to standardize plotting. This named plot style is designed to be used with all drawings that are to be submitted to the District, and is used in conjunction with the District drawing template. This file is available for download on the District website at www.cleanwaterteam.com/engineering.html.

B. Line Width Plotting

The following table defines the widths used in the CCWRD.stb file, and are considered sufficient for the majority of drawings. When the plotted drawing size is reduced to half size, the listed line widths will need to decrease proportionally.

	Plotted L	Plotted Line Width	
Line thickness	mm	in	
Extra Fine	0.13	0.005	
Fine	0.18	0.007	
Thin	0.25	0.010	
Medium	0.35	0.014	
Wide	0.50	0.020	
Extra Wide	0.70	0.028	
XX Wide	1.00	0.039	
XXX Wide	1.40	0.055	

Table 1 Plotted Line Widths


THIS PAGE INTENTIONALLY LEFT BLANK

PART 4 - FILE NAMING CONVENTIONS

4.1 PRODUCTION DRAWINGS

A. The following naming convention shall be met for all production drawing files submitted to the District.

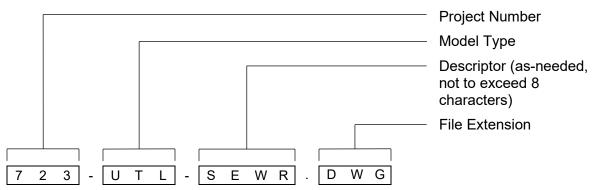

Plan Code	Plan Type	Description
G	General Sheets	Cover page, symbology, abbreviations, notes, etc.
HC	Horizontal Control Plan	Alignment control data
RW	Right-of-Way Plan	
DR	Demolition/Removal Plan	
GR	Grading Plan	
BP	Bypass Plan	
CI	Civil Plan	Master utility or on-site civil plan
СР	Civil Plan and Profile	
CD	Civil Details	
UT	Utility Plans	
MU	Master Utility Plans	
D	Process Plan	Process plan and details
OP	Operation Plan	Operations plan and details
ST	Structural Plan	Structural plan and details
М	Mechanical Plan	
MD	Mechanical Details	
E	Electrical Plan	Electrical plan and details
Р	Plumbing Plan	Plumbing plan and details
RP	Roadway Plan	
RD	Roadway Details	
А	Architectural Plan	Architectural plan and details
L	Landscape Plan	Landscape plan and details
Table 2 Plan Co		

Table 2 Plan Codes

4.2 REFERENCE FILES

A. The external reference and source drawing file naming convention has four mandatory fields. All fields must be used and in the correct sequence.

- B. There are two types of reference files. External reference files contain 2-dimensional linework, while data reference files contain 3-dimensional information used for the design of the project.
- C. External Reference files (Xrefs)
 - 1. External references are drawings created in model space that are inserted to production drawings per **Section 5.7A**.
 - 2. Xrefs include static linework that does not change through the design process.
 - 3. ADJ (Adjacent Linework)
 - a. Includes existing underground utilities
 - b. If a pipe network is created for existing utilities, the linework may be inserted into the production drawing by use of data referencing, and excluded from this file.
 - c. This xref is referenced into model space.
 - 4. BDR (Border)
 - a. Includes the drawing border, as provided by the District.
 - b. This fill will include the border linework, and any annotation that is constant throughout the project.
 - c. This xref is referenced into paper space.
 - 5. DTL (Details)
 - a. Includes all detail linework and annotation to be placed into the Detail Sheets.
 - b. This xref is referenced into model space.
 - 6. MTR (Master Linework)
 - a. Includes proposed design linework, such as building pads, structures and roadways.
 - b. Includes Survey linework, such as property lines, section lines, roadway centerlines, etc.
 - c. This xref is referenced into model space.

- 7. TOP (Existing Topographic Linework)
 - a. This will include any aboveground existing feature 2-dimensional linework, such as buildings, roadways, fire hydrants, and any other visible features.
 - b. Surface contours are created in the GRD data reference file. As such, they are displayed as a civil object, and are not included in this file.
 - c. This xref is referenced into model space.

Model Type (Xrefs)	Description
ADJ	Adjacent underground linework
BDR	Drawing title and border
DTL	Details
MTR	Master linework
TOP	Existing topographic features
Table 3 External Reference	Naming

Table 3 External Reference Naming

- D. Data Reference files (Drefs)
 - 1. These are the files where the project design is performed. Data references are created from the design objects created in model space within these files. The data references are then inserted into the production drawing by use of the "Toolspace Data Shortcuts".
 - 2. Drefs include objects that are needed for design purposes, or are expected to change throughout the design process.
 - 3. ALN (Alignments)
 - a. This will include all alignments where design is required.
 - b. Proposed pipe and roadway alignments belong in this file.
 - c. If existing alignments will be used for labelling purposes, the alignment will be included here as a data reference.
 - d. Alignments are used to create profile surface linework. The alignment profile data shall be created in this file.
 - e. The referenced information will include alignments with existing and finished grade profiles.
 - 4. GRD (Surfaces)
 - a. It is recommended that each surface be created in its own drawing.
 - b. These reference files will include existing and proposed surfaces.
 - c. The referenced information will include existing and proposed contours.
 - d. All design linework, such as breaklines, feature lines, 3D polylines, points, exclusion areas, and boundaries, are required to be included in this file.
 - e. Contours generated from Terrestrial or Mobile LiDAR data sets shall have the associated .tin file decimated to 10% of the original point acquisition size.
 - 5. UTL (Utilities)
 - a. Includes all pipe networks, including proposed utilities, and any existing utilities created for design purposes.

- b. Design information will include pipes and structures.
- c. A separate UTL file should be created for each proposed and existing utility network.

Model Type (Drefs)	Description
ALN	Alignments
GRD	Existing and proposed surfaces
UTL	Pipe networks
TILL AD & D. C	

Table 4 Data Reference Naming

E. Hyperlinks

1. Hyperlinks can be added to objects within CAD, which will allow the user to open relevant records directly from the CAD file. When documents are available, they shall be hyperlinked to the appropriate objects. Documents to be hyperlinked would include utility records, deeds, easements, and any other applicable information. The hyperlink will be set to use a relative path.

PART 5 - STRUCTURE

5.1 PROJECT STRUCTURE

- A. Coordinate system
 - 1. The coordinate system shall be in accordance with the contract scope.
 - 2. The project coordinate system shall be a project based coordinate system that is related to Nevada State Plane East (NAD 83, latest epoch, currently 2010.00).
 - 3. The coordinate system includes a combined scale factor which is multiplied by the Northing and Easting value. Additionally, the Northing value must subtract 26,000,000.00 and the Easting must subtract 600,000.00.
 - 4. Any information referenced in design drawings shall not be moved or rotated from the original coordinates used in the drawing, and shall be at 0, 0, 0 origin.
 - 5. Each drawing shall be appropriately geo-referenced.

Drawing Settings - Drav	ving1		_ _ ×
Units and Zone Transforma	ation Object Layers Abbrevia	ations Ambient Settings	
Drawing units:	Imperial to Metric conve	rsion:	Scale:
Feet	US Survey Foot(39.37	Inches per Meter)	▼ 1" = 40'
Angular units:	Scale objects inserte	Scale objects inserted from other drawings Set AutoCAD variables to match	
Degrees	Set AutoCAD variable		
Zone			
Categories:		USA, Nevada	•
Available coordinate sys	stems:	-87 - 111	
NAD83 Nevada State P	Planes, East Zone, US Foot		-
- Selected coordinate syst Description:	em code: NV83-EF		
NAD83 Nevada State	Planes, East Zone, US Foot		
Projection:			
TM			
Datum:			
NAD83			
		OK Canc	el Apply Help

5.2 FOLDER STRUCTURE

- A. The District utilizes the following folder structure, and all electronic submittals must conform to this structure:
 - 1. The project base folder name will include the contract number and a brief description:
 - a. Example: 723 CCWRD CAD Standards
 - 2. _Shortcuts (Automatically created and necessary for AutoCAD to utilize data shortcuts. No user data should be added to this folder or it's subfolders.)
 - a. Alignments

- b. PipeNetworks
- c. PressurePipeNetworks
- d. Profiles
- e. Surfaces
- f. ViewFrameGroups
- 3. External References (Static reference files shall be stored here, such as existing feature files, survey linework files, and 2-dimensionsal files.)
 - a. DGN
 - b. DWF
 - c. DWG
 - d. Images
- 4. Production Drawings (Production drawings and the Sheet Set Manager (if used) are to be stored here.)
- 5. Source Drawings (Drawings utilizing civil objects will be stored here. Data references are created from these files.)
 - a. Alignments
 - b. Pipe Networks
 - c. Surfaces
 - d. View Frame Groups
- 6. Survey
 - a. LiDAR point data, as applicable:
 - i. Provide in .las and .txt file format with RGB values.
 - ii. Do not embed in the CAD deliverable due to size constraints.
 - b. Points
 - i. Include all points within CAD file.
 - ii. Include a .csv file in the following order:
 - a) Pt#, N, E, Elev, Desc

🕽 🕤 🗢 📙 « Users 🕨 DKelley 🕨 _	Sample Project 🕨 👻 🍕 S	earch_Sample Pro	yett	
Organize 🔻 🛛 Burn 🔹 New folder			8⊞ ▼	0
Name	Date modified	Туре		
J _Shortcuts	10/12/2015 8:36 AM	File folder		
🌗 External References	10/12/2015 8:37 AM	File folder		
Production Drawings	10/12/2015 8:36 AM	File folder		
Source Drawings	10/12/2015 8:40 AM	File folder		
JJ Survey	10/12/2015 8:40 AM	File folder		

- B. The folder structure identified above is the minimum required for any project. Any deviations or additions to this folder structure must first be approved by the District Project Manager.
- C. When multiple disciplines are working on a project, the folder structure can be modified to add discipline specific folders under the External References, Production Drawings, and Source Drawings folders. The disciplines should not add folders to the format shown in the figure above.

5.3 SHEET SET MANAGER

Sheet Set Managers are allowed for use by the Consultant. If a Sheet Set Manager is used, the .dst file shall be included with the electronic submittal and shall be saved with the sheets in the project folder.

5.4 SHEET STRUCTURE

- A. General Requirements
 - 1. Drawings shall be organized by discipline in a logical order. Typically, following the General and Survey drawings, this would be in the order that construction would occur for the project. The organization of **Table 2** provides a typical order in which drawings may be organized.

2.

Sheet Index	SHEET IN	<u>IDEX</u>	
a. A sheet index will be included on the Cover	DWG	SHEET	DESCRIPTION
Page, and will consist	G1	1	COVER SHEET
of three columns. The	G2	2	ABBREVIATIONS
first column will be the	G3	3	SYMBOLOGY
sheet number, the	G4	4	GENERAL NOTES
second column will be the drawing number,	CP1	5	CIVIL PLAN AND PROFILE 1
and the third column	CP2	6	CIVIL PLAN AND PROFILE 2
will be the sheet title.	CP3	7	CIVIL PLAN AND PROFILE 3
If the sheet index	CD1	8	CIVIL DETAILS 1
cannot fit on the cover	CD2	9	CIVIL DETAILS 2
page, the entire sheet	M1	10	MECHANICAL PLAN 1
index will be placed onto the second sheet.	M2	11	MECHANICAL PLAN 2
	М3	12	MECHANICAL PLAN 3
b. The sheet index style shall conform to	MD1	13	MECHANICAL DETAILS 1
Section 6.1E.	MD2	14	MECHANICAL DETAILS 2

5.5 MODEL SPACE AND PAPER SPACE

- A. Model Space and Paper Space are the two separate spaces within a CAD drawing for drawing information to reside.
- B. Model Space is where the geometric model is drawn in the correct coordinate system at actual scale.
- C. Paper Space is a two-dimensional coordinate system used for sheet layouts.
- D. No design work is permitted in Paper Space.
- E. The District allows use of both spaces and multiple paper space layout tabs within each .dwg file.

5.6 REFERENCE FILES

- A. All graphical information shall be generated in model space, on the correct coordinate system. Extraneous data should be deleted prior to electronic submittal.
- B. All layout drawings (title block, general notes, etc.) shall be referenced into paper space.
- C. Appropriate use of reference files are important in the management of file sizes.
- D. External Reference Files:
 - 1. See **Section 4.2B** for further information on External Reference files.
 - 2. External reference files include separate files for:
 - a. Title block (to be referenced into paper space)
 - b. Static linework drawings (existing topography, details, etc.)
 - c. Subconsultant overlays (mechanical plans, landscaping plans, etc.)
 - d. Details

- 3. See **Section 4.2D** for further information on Source Drawings (Data Reference Files):
 - a. These are design files created through the use of civil objects.
 - b. Data reference files include separate files for:
 - i. Alignments
 - ii. Pipe Networks
 - iii. Surfaces

5.7 PRODUCTION DRAWINGS:

- A. External reference files shall be:
 - 1. Attached by reference type "Overlay"
 - 2. Path Type shall be set to "Relative Path"
 - 3. Scale shall be "1"
 - 4. Insertion point shall be 0, 0, 0
 - 5. Rotation shall be "0"
 - 6. Inserted onto layer '0'
- B. Source files shall be referenced into the drawing using the "Toolspace Data Shortcuts".
- C. Production drawings shall contain the following (as applicable):
 - 1. North arrow and scale bar
 - 2. Match lines and associated text
 - 3. Annotation, notes, tables, and legends
 - 4. Title block
 - 5. Detail titles
 - 6. Revision clouds, deltas, and notes
 - 7. Key maps (Place in the upper right corner, if possible)
 - 8. Professional Stamps

5.8 VIEWPORTS

- A. A viewport is a window in the Paper Space which allows the user to view the Model Space.
- B. Viewports should be placed on a non-plottable layer.

5.9 DRAWING ANNOTATION

- A. With the implementation of data references and the use of multiple drawing tabs, it is often practical to annotate drawing objects directly within the Production Drawing. Place object dimensions and text within model space.
- B. All design and detail objects will be in model space at actual scale, following the layer conventions set forth within this document.

5.10 DRAWING NAMING

A. Drawing names shall include the Plan Code as identified in **Section 4.1A Table 2**, followed by sequential numbering, with no hyphen between the Plan Code and drawing number.

5.11 TITLE BLOCK

A. Standardized title block information ensures the uniformity of District drawings, and aids subsequent drawing storage and retrieval efforts. These title blocks shall be used on all District projects. Titles shall consist of the facility name and project title as shown on the project schedule. The project title of the drawings should also be exactly the same as the title on the accompanying specifications. Check with the District Project Manager if there is any doubt about the proper name of the project.

5.12 SCALES AND NORTH ARROW

A. The following is a list of maximum allowable scale sizes for District projects. Note that if a drawing has multiple scales, each view must be appropriately labeled. For drawings that are not drawn to scale (i.e. details), use the term N.T.S. or NOT TO SCALE in the title block's scale.

Engineering Scales	Architectural Scales	Typical Uses
1" = 1000'		Site Plans
1" = 800'		Site Plans
1" = 600'		Site Plans
1" = 500'		Site Plans
1" = 400'		Site Plans
1" = 300'		Site Plans
1" = 200'		Site Plans
1" = 100'		Site Plans, Civil Plans, Topographic Surveys of Ground only
1" = 50'		Geometry Plans, Topographic Surveys, As-Built Surveys
1" = 40'		Plan and Profiles, Utility Maps
1" = 30'	3/32" = 1'-0"	Floor Plans, Exterior Elevations, Details
1" = 20'	3/16" = 1'-0"	Floor Plans, Exterior Elevations, Details, Enlarged Utility
		Plans, Topographic Surveys, As-Built Surveys
1" = 10'	1/8" = 1'-0"	Floor Plans, Exterior Elevations, Details
1" = 5'	1/4" = 1'-0"	Floor Plans, Exterior Elevations, Details
	3/8" = 1'-0"	Interior Elevations
1" = 2'	1/2" = 1'-0"	Enlarged Floor Plans, Wall Sections, Details
	3/4" = 1'-0"	
1" = 1'	1" = 1'-0"	Wall Sections, Foundation and Footing Details
	1-1/2" = 1'-0"	
	3" = 1'-0"	Door and Window Details, Cabinet Details
	Half Size	Door and Window Details, Cabinet Details
	Full Size	Door and Window Details, Cabinet Details

B. Bar Scales

A bar scale identifying the drawing scale at onehalf, full, and double scale shall be included on all scaled drawings. In general, proper

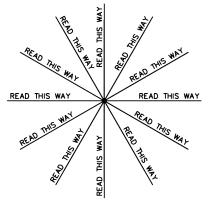
placement of the bar scale is directly beneath the north arrow. If the bar scale is

used when there is no north arrow, or if there are separate horizontal and vertical scales, place the bar scale as close as practical to the detail title.

C. North Arrow

A North arrow shall be placed on all drawing plan views, and also on details, as applicable. The north arrow should be in the upper right of the view it is referencing. If there is more than one plan view in a drawing, use of a separate north arrow for each view is acceptable. As much as possible, north is to be towards the top or left of the sheet. Avoid pointing north to the bottom or right of the sheet.

D. Key Map

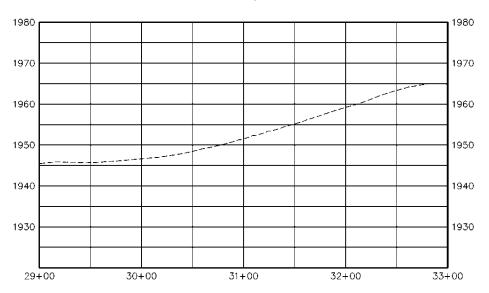

Key maps should be located in the upper right corner of the sheet. Key maps shall be in the same orientation as the plan.

PART 6 - DRAWING SETUP

6.1 ANNOTATION

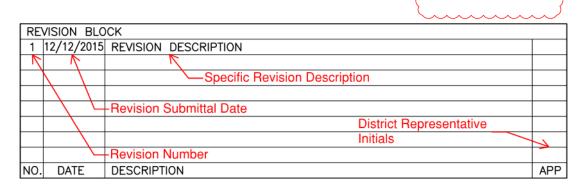
- A. Annotation and Label Styles
 - 1. Annotative scale shall be used for all annotation and label styles.
 - 2. The minimum allowable text height is 0.10 inches, as plotted on full size drawings.
 - 3. Typical font shall be RomanS.shx.
 - 4. Title font shall be Bold.shx, and shall be 0.15 inches.
 - 5. With few exceptions, the District does not approve the use of symbols to replace text.
- B. Text Styles
 - 1. Capital letters are required for all text.

- 2. Text shall be placed in line with the referenced object or perpendicular to the bottom of the page if not associated to an object. All text shall be readable from the bottom or right side of the page.
- 3. Text shall preferably not be placed over feature lines, hatching, or patterning. If text is placed in a hatched or patterned area, the text masking should be set to background color, or the hatching/patterning shall be clipped, so the text can be clearly read.
- 4. Text shall be justified in relation to the reference. Text justification depends upon the type of text being placed. For example, general numbered notes shall have upper left justification, labels appearing to the left of a feature shall have right justification, and labels appearing to the right of a feature shall have left justification.
- 5. Fraction auto-stacking shall be disabled.
- 6. Reference call-outs and cross sections shall use the blocks provided on the Abbreviation/Symbology CAD drawing.
- 7. When using multiline text (mtext) masking, set background mask border offset factor to 1.2.
- 8. When using text masking, use an offset setting of 0.2, mask type to wipeout, and text frames (tframes) to off for printing.
- C. Dimension Styles
 - 1. All dimension parts shall be either "By block" or "By layer".
 - 2. Dimensions shall be Annotative.
 - 3. Closed arrowheads shall be used, and shall be of height 0.125.
 - 4. Horizontal, vertical and aligned text should be above or below the line.


- 5. If a fill color is used, it should be set to 'Background'.
- 6. Dimension lines shall not cross each other, other text, or leader lines. When crossing is unavoidable, insert a break in the dimension line or leader line at the place of crossing.
- D. Leader/Multileader Styles
 - 1. The District prefers the use of multileaders for callouts.
 - 2. Multileaders shall be Annotative.
 - 3. The leader arrow head size shall be 0.125".
 - 4. All leader part colors shall be either "By Block" or "By Layer".
 - 5. Text shall be attached to "Middle of Top Line".
 - 6. For multileader styles that use blocks, utilize standard blocks as practicable. Standard blocks should be to a scale of 1.
 - 7. Leaders shall not cross each other, other text, or dimension lines. When crossing is unavoidable, insert a break in the leader line or dimension line at the crossing.
- E. Table Styles
 - 1. Table annotation shall conform to **Section 6.1B**.
- F. Notes
 - 1. Notes shall be either numerically or alphabetically ordered.
 - 2. Notes, tables, and legends are typically located along the right side of the drawing area, below the key map.
 - 3. Construction Notes can utilize standard blocks, multileaders or civil object layers (see **Section 7.3A**). Where practicable, use standard blocks included in the multileader styles.
 - 4. When more than one construction note applies to an object, link the construction note identifiers in sequence and share one leader.
 - 5. When construction notes apply to specific details on the same sheet, the notes should be located near the detail title. When multiple details on the same sheet have construction notes, the numbering shall start with "1" for each detail.
- G. Detail Titles Annotation
 - 1. Detail titles shall consist of a title, scale and callout, and be centered under each plan, detail, section, etc.

- 2. Number details and sections on each sheet start with the sequence number "1". Follow a right to left, from bottom to top numbering convention throughout each detail sheet.
- 3. For details not drawn to scale, type "NTS" where the scale is indicated.
- H. Hatching
 - 1. Standard hatches are shown in **Appendix A**.
 - 2. The use of solid hatch is not allowed.

- I. Profile Views
 - 1. Horizontal Settings
 - a. The maximum allowable horizontal scale for a profile view is 1" = 40'.
 - b. Alignment stations shall be labeled every 100 feet.
 - c. Grid lines shall be shown every 50 feet.
 - 2. Vertical Settings
 - a. The vertical exaggeration shall be 1" = 10' maximum.
 - b. Elevations shall be identified every 10 feet.



c. Grid lines shall be shown every 5 feet.

- J. Revisions
 - 1. Revisions made during the design process are not noted in the Revision Block or treated in any special way.
 - 2. Revisions made after the project has been advertised for bid are specifically identified in the following ways:
 - a. Addendum (changes prior to bid opening)
 - b. As-bid (with incorporation of addendum changes up to award of contract)
 - c. Contract changes (changes during construction)
 - d. Record drawings (incorporating all design changes)
 - 3. Record the first revision number starting in the top row of the Revision Block.
 - 4. Subsequent revisions are placed below the previous revision number.
 - 5. All revisions shall be identified on each sheet being revised.
 - 6. Minimum revision cloud arc lengths shall be 0.25.
 - 7. Initial revision submittals shall be clouded red. Once approved, the revision cloud and delta shall be changed to black prior to submittal.

8. A numbered delta shall be placed next to each revision cloud. The delta should be located close to the upper right portion of the revision cloud, if possible.

6.2 OBJECT LINETYPES

- A. See Section 3.3B for plot style lineweights.
- B. Features that close, such as pads, buildings, and easements, shall be closed polylines.
- C. As much as practicable, all linework shall be constructed of continuous polylines.
- D. The following typical plot styles and linetypes are to be used for the following objects.
 - 1. Existing features and annotation
 - a. Plot Style Thin 60 (0.25 mm, 60% Screening)
 - b. Linetype HIDDEN2
 - 2. Proposed features and annotation
 - a. Plot Style Medium (0.35 mm)
 - b. Linetype CONTINUOUS
 - 3. Hatches
 - a. Plot Style Thin-60 (0.25 mm, 60% Screening)
 - b. Pattern, see Appendix A.
 - 4. Key Maps

- a. Plot Style Thin (0.25 mm)
- E. The District template includes a more comprehensive list of plot styles and linetypes.

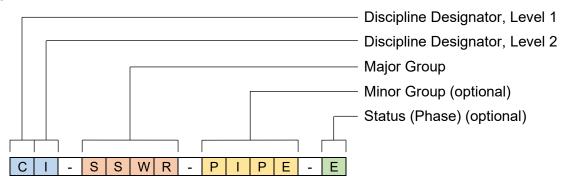
LINEITPES		
DESCRIPTION	LINETYPE	APPEARANCE
CENTERLINE	CENTER2	
PROPOSED	CONTINUOUS	
EXISTING	HIDDEN2	
RIGHT-OF-WAY	PHANTOM2	
PROPERTY LINE	DIVIDE2	· · · · · · ·

6.3 SYMBOLOGY

- A. Commonly Used District Plan Symbols
 - 1. Commonly used plan symbols for use on District projects are provided in the Abbreviation/Symbology drawing, available for download on the District website at <u>www.cleanwaterteam.com/engineering.html</u>, in CAD format.
 - 2. If additional Symbology is used, it must be added to the Symbology legend.
 - 3. See **Appendix A** for standard Symbology.

6.4 ABBREVIATIONS

- A. With few exceptions, the District does not allow for use of symbols to replace text.
- B. See Appendix B for Abbreviation List.
- C. See **Appendix C** for Facility Code abbreviations.


THIS PAGE INTENTIONALLY LEFT BLANK

PART 7 - DRAWING LAYERS

7.1 LAYER NAMING

- A. The District utilizes US National CAD Standard-V6 (NCS) naming conventions for layer naming format. Layers included in AutoCAD with the initial download are acceptable. This format organizes the layer name by four distinctly defined fields. A hyphen (-) is used to separate each field.
- B. The District requires that surface and subsurface objects be on separate layers. For example, a surface sewer manhole would be on layer C-SSWR-MHOL-N, and the subsurface piping would be on layer C-SSWR-PIPE-N.
- C. The fields identified below are common field names, and shall be used on all District projects. However, the list below is not all-inclusive, and layers can be created as necessary to maintain organization within the drawings. The created layers shall conform to the requirements below. Refer to the NCS for additional naming guidelines.

- 1. The Discipline Designator identifies the category. This is a two-character field. The first character identifies the discipline, and the second character is an optional modifier.
 - a. Discipline Designator, Level 1: denotes the category of subject matter of the layer.

Com	mon Level 1 Discipline Designators
Α	Architectural
В	Geotechnical
С	Civil
D	Process
Е	Electrical
G	General
Н	Hazardous Materials
L	Landscape
Μ	Mechanical
0	Operations
Р	Plumbing
S	Structural
V	Survey

b. Discipline Designator, Level 2: an optional second character used to further define the discipline character. As an example, the Civil Level 2 designators are shown below.

Civil	Level 2 Discipline Designators
D	Demolition
D	Survey (Site)
G	Grading
Ρ	Paving
Ι	Improvements
Т	Transportation
U	Utilities

2. The Major Group is a four-character field that identifies a major building component.

Common Major Groups		
ANNO	Annotation	
ROAD	Roadway	
SSWR	Sanitary Sewer	
STRM	Storm Sewer	
TOPO	Topography	
WATR	Water System	

- 3. The Minor Group is an optional, four-character field to help further define the Major Group. A second minor group may be added, as necessary.
 - a. Common Minor Group names:

Common M	inor Groups
CNTR	Centerline
FORC	Force Main
LATL	Lateral
MHOL	Manhole
PIPE	Pipeline
STRC	Structure
TABL	Table

b. Subsurface Utility Engineering (SUE) Quality Levels can also be identified with the use of Minor Groups. Refer to the ASCE *Standard Guideline for the Collection and Depiction of Existing Subsurface Utility Data,* 2003, for SUE Standards and Definitions.

SUE Minor	Groups
QL-A	Quality Level A
QL-B	Quality Level B
QL-C	Quality Level C
QL-D	Quality Level D

4. The Status (Phase) is an optional single-character field that defines the status of the layer object.

Status Field	d Codes
А	Abandoned
D	Existing to demolish
E	Existing to remain
F	Future work
М	Items to be moved
Ν	New work
Т	Temporary work
Х	Not in contract
1-9	Phase numbers

7.2 DEFPOINTS

A. This is a special layer that is created and used by AutoCAD for dimension properties. Nothing shall be placed on this layer.

7.3 CIVIL OBJECTS

- A. Civil 3D allows for the use of object labels for civil objects. These include points, surfaces, parcels, grading objects, alignments, pipe networks, profiles, profile views, sections, section views, catchment areas, corridors, and view frames. Label styles shall conform to **Section 6.1 Annotation**.
- B. Civil object styles graphically represent design features. These styles shall conform to **Sections 6.2 Object Linetypes, 6.3 Symbology** and **7.1 Layer Naming**.

THIS PAGE INTENTIONALLY LEFT BLANK

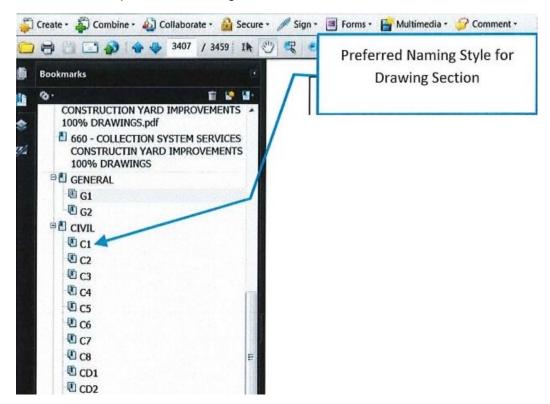
PART 8 - ARCHITECTURAL, STRUCTURAL, MECHANICAL AND ELECTRICAL STANDARDS

To maintain consistency between different disciplines, all of the Standards listed in the previous Sections are applicable.

THIS PAGE INTENTIONALLY LEFT BLANK

PART 9 - SUBMITTAL REQUIREMENTS

9.1 SUBMITTAL REQUIREMENTS


- A. Submittals shall be made in accordance with the contract scope.
- B. Submittals shall be identified with "100% DRAWINGS", "BID SET", or "CONFORMED DOCUMENTS", as applicable.
- C. Electronic files will be submitted with the final design drawings, and as identified in the project contract.
- D. Electronic submittals will include the entire folder structure, as identified in Section 5.2
 Folder Structure. Production drawing reference files shall be set to "Relative Path". Do not use eTransmit to bind the reference files to the production drawing.
- E. Electronic signatures will not be required for drawings submitted electronically.
- F. If conformed drawings are produced, electronic versions of the conformed drawings will be provided in both .dwg and .pdf format.
- G. If record drawings are produced, electronic files of the as-built drawings will be provided in both .dwg and .pdf format.

9.2 ELECTRONIC FILES

- A. File transfers
 - 1. File transfers shall be made in accordance with the contract scope.
 - 2. The District requires that CAD files be submitted in the format that was available at the time of the project start, unless otherwise specified in the contract scope.
 - 3. All drawings should be purged of unused blocks, line types, fonts, proxy graphics, or similar elements, and audited, with layers in the correct state for publishing (frozen/thawed) prior to delivery to the District.
 - 4. Production drawings shall be saved with paper space set as the current view, zoomed to the extents of the drawing sheet.
 - 5. Consultants using other software are responsible for confirming, prior to delivery to the District that all CAD files comply with the District standards.
 - 6. The Consultant shall also scan files with the latest anti-virus detection software to ensure clean file transfers.
 - 7. Documentation is expected to accompany all file transfers. Include project name and contract number on both hard copy documentation and CD.
- B. Electronic files shall include the following:
 - 1. Production drawings, external references, source drawings, images, custom line types, non-standard fonts, plot style files, and any other pertinent files or information.
 - Production drawings shall have all external references in their proper folder and properly attached to the drawing. External references are NOT to be bound into the drawing.

3. A bookmarked pdf copy of the design drawings will be included for each volume of drawings. The bookmark will be named according to the bookmark number. Do not include the particular drawing name.

9.3 GIS DATA MANAGEMENT (UNDER DEVELOPMENT)

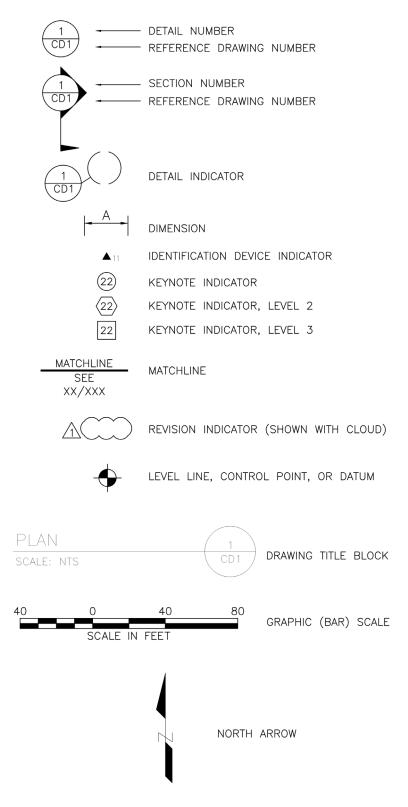
9.4 REPRODUCTION

A. Sheet Size

Sheet size shall be 22" x 34". A larger sheet size may be used only with prior approval from the District Project Manager.

- B. Paper Type
 - 1. Paper type shall be 24# bright white (92 or better).
 - 2. Mylar drawings will NOT be required for District submittals.
- C. Plotting
 - 1. All drawings shall be plotted to scale.
 - 2. The District Project Manager may determine that a plotter's output does not adequately show halftone and sold line definition. If so, the Project Manager will direct the Consultant to use the District's reprographic vendor for plotting services.
 - a. Consultant shall check drawings for print quality and standards prior to submitting them to the District.
 - 3. In general, all half-sized drawing sets are plotted full sized, and then reduced to half size for the printing process. All half size drawings shall be to scale.

APPENDIX A - SYMBOLOGY



SITE SYMBOLS - GENERAL

DRAWING SYMBOLS

SITE SYN	<u> IBOLS - IMPROVEMENTS</u>	<u>SITE SYN</u>	MBOLS - EARTHWORK
	EXISTING BUILDING STRUCTURE		EARTH, CRUSHED ROCK GRAVEL
	FIRE TRUCK ACCESSIBLE ROUTE		EARTH, UNDISTURBED
	CONCRETE WALKWAY AND DRIVEWAY		EARTHWORK, COMPACTED FILL
	GRAVEL WALKWAY		SAND
	COMPACTED GRAVEL FILL		EROSION AND SEDIMENTATION CONTROL, FILTRATION BED
	EXISTING ASPHALT		
	APPROXIMATE PAVEMENT RESTORATION		
	OPEN SPACE/VEGETATION		

APPENDIX B - ABBREVIATIONS

&	And		
\angle	Angle	C&G	Curb & Gutter
0	Degrees	CATV	Cable Television
Δ	Delta	CB	Catch Basin
Ø	Diameter	CBC	City of Boulder City
"	Inch (es)	CC	Clark County
	Foot / Feet	CCRFCD	Clark County Regional Flood
			Control District
A/C	Air Conditioning	CCSD	Clark County School District
A/E	Architect / Engineer	CCTV	Closed Circuit Television
AB	Anchor Bolt	CCWRD	Clark County Water
ABAN	Abandon(Ed)	CONIND	Reclamation District
ABAN		CF	Cubic Feet
AC	Aggregate Base Course	CFS	Cubic Feet per Second
	Asphaltic Concrete	CHDPEP	
ACP	Asbestos Cement Pipe	CHDFEF	Corrugated High Density
ADA	Americans with Disabilities Act		Polyethylene Pipe
ADDL	Additional	CI	Curb Inlet
AGG	Aggregate	CIP	Cast Iron Pipe
ALT	Alternate	CIR	Circle
ANSI	American National Standards	Ę	Centerline
	Institute	CL2	Chlorine
APPD	Approved	CLR	Clear
APN	Assessor Parcel Number	CLSM	Controlled Low-Strength
APPROX	Approximate		Material
ASCE	American Society of Civil	CLV	City Of Las Vegas
	Engineers	CM	Centimeter
ASME	American Society Mechanical	CMP	Corrugated Metal Pipe
	Engineers	CMU	Concrete Masonry Unit
ASPE	American Society Plumbing	CNLV	City Of North Las Vegas
	Engineers	CO	Clean Out
ASPH	Asphalt	COH	City Of Henderson
ASSN	Association	COMM	Communication
ASSY	Assembly	CON	Concentric
ASTM	American Society for Testing and	CONC	Concrete
	Materials	CONST	Construct / Construction
AUX	Auxiliary	CONT	Continue or Continuous
AVE	Avenue	COORD	Coordinate
AWG	American Wire Gauge	CPLG	Coupling
	Ū	CPVC	Chlorinated Polyvinyl Chloride
BC	Back Of Curb		Pipe
BCR	Beginning Of Curb Return	СТ	Court
BE	Bell End	CTR	Center
BLDG	Building	CTV	Cable Television
BLM	Bureau of Land Management	CU	Cubic
BLVD	Boulevard	CU FT	Cubic Feet
BM	Benchmark	CUIN	Cubic Inch
BOT	Bottom		Cubic Yard
BRG	Bearing	CY	Cubic Yard
BVC	Beginning Of Vertical Curve	CYL	Cylinder
BW	Both Ways	UIL	Cymruch
	Doar Wayo		

DCSWCS DEMO DEPT DET DEV DG DI DIA DIAG DIM DIP DIST DIV	Design and Construction Standards for Wastewater Collection Systems, latest edition Demolition Department Detail Development Decomposed Granite Drop Inlet Diameter Diagonal Dimension Ductile Iron Pipe Distance Division	FIG FL FLG FM FND FO FPC FPM FPS FPVC FRP FT FTG FUT	Figure Flow Line Flange Force Main Found Fiber Optic Flexible Pipe Coupling Feet per Minute Feet per Second Fusible Polyvinyl Chloride Fiberglass Reinforced Polymer Foot / Feet Footing Future
DL DR DWG DWY	Dead Load Drive Drawing Driveway	GA GAL(S) GALV GAS GB	Gauge Gallon Galvanized Natural Gas Grade Break
E EA ECC ECR EF EFF EG ELEC ELEV EMBK	East / Easting Each Eccentric End of Curb Return Each Face Effluent Existing Grade Electrical Elevation Embankment	GC GIS GND GPD GPH GPM GRD GM GV	General Contractor Geographic Information System Ground Gallons per Day Gallons per Hour Gallons per Minute Grade Gravity Main Gate Valve
ENGR EP EPA EQUIP ESMT EST EVC EW EX EXC	Engineer Edge of Pavement Environmental Protection Agency Equipment Easement Estimate End of Vertical Curve Each Way Existing Excavate	HDPE HEX HH HORIZ HP HPI HR HT HWL HWL HWY	High Density Polyethylene Hexagonal Hand Hole Horizontal High Point Horizontal Point of Intersection Hour Height High Water Level Highway
FABR FB FC FD FEMA FF FG FH	Fabrication / Fabricated Fiber Face of Curb Floor Drain Federal Emergency Management Agency Finish Floor Finished Grade Fire Hydrant	ICC ID IN INF INST INV IP IRR	International Code Council Inside Diameter Inch (es) Influent Install Invert Iron Pipe Irrigation

JB	Junction Box	NPS NRS	Nominal Pipe Size Nevada Revised Statutes
К	Kips	NTS	Not To Scale
KG	Kilogram	NVE	NV Energy
KM	Kilometer	NWL	Normal Water Level
KSF	Kips Per Square Foot		
KSI	Kips Per Square Inch	OC OD	On Center Outside Diameter
L	Left	OFF	Offset
LAT	Lateral	ОН	Overhead
LB	Pound	OHP	Overhead Power
LEN	Length	OHT	Overhead Telephone
LF	Linear Feet (Foot)	ORIG	Original
LP	Low Point	OSHA	Occupational Safety and Health
LS	Lift Station		Administration
LT	Light	OZ	Ounce
LVVWD	Las Vegas Valley Water District		
LWL	Low Water Level	Р	Pole
		P&ID	Process and Instrumentation
М	Meter		Diagram
MAX	Maximum	PIP	Poured in Place
MB	Meter Box	P_	Property Line
MEAS	Measurement	PB	Pull Box
MECH	Mechanical	PC	Point Of Curvature
MFR	Manufacturer	PCC	Point Of Compound Curvature
MG	Million Gallons	PCF	Pounds per Cubic Foot
MGD	Million Gallons per Day	PCP	Polymer Concrete Pipe
MH	Manhole	PE	Polyethylene
MIN	Minimum	PERM	Permanent
MISC	Miscellaneous	PERP	Perpendicular
MJ	Mechanical Joint	PI	Point Of Intersection
ML	Mortar Lined	PL	Plate
MLC	Mortar Lined & Coated	PLS	Professional Land
MM	Millimeter	FLO	
MON	Monolithic	PO	Surveyor/Private Lift Station
MSDS	Material Safety Data Sheet	POT	Push-On Doint of Tongonov
MU	Masonry Unit	POT	Point of Tangency Power Pole
MW	Monitoring Well	PPM	Power Pole Parts Per Million
N	North / Northing	PRC	Point of Reverse Curvature
N/A	North / Northing	PRELIM	Preliminary
NAOCL	Not Applicable	PROJ	Project
	Sodium Hypochlorite	PROP	Proposed
	National	PSF	Pounds per Square Foot
	North American Vertical Datum	PSI	Pounds per Square Inch
NBC	National Building Code	PT	Point
	Nevada Coordinate System	PVI	Point Of Vertical Intersection
NDOT	Nevada Department of	PVMT	Pavement
	Transportation	PVC	Polyvinyl Chloride Pipe
NIC	Not In Contract	PWR	Power
NO	Number		

Q QTR QTY	Rate of Flow Quarter Quantity	STLT STRUCT SUPP SYM	Street Light Structure / Structural Supplement (Al) Symbol
R RAD RCB RCP RD RECT REF REINF REL REM REQD RES RET REV RP	Right Radius Reinforced Concrete Box Reinforced Concrete Pipe Road Rectangular Reference Reinforced Relocate (D) Remove (D) Required Residential Return Revision Radius Point	TAN TC TEL TEMP THK THRD THRU TMH TOP TP TS TV TYP	Tangent Top of Curb Telephone Temporary Thick (Ness) Thread(Ed) Through Top of Manhole Top of Pipe Telephone Pole Traffic Signal Television Typical
RPM RPS RR RTC R/W	Revolutions per Minute Revolutions per Second Railroad Regional Transportation Commission of Southern Nevada Right-Of-Way	UDACS UFC UG	Uniform Design and Construction Standards for Water Distribution Systems, Latest Edition Uniform Fire Code Underground
S SCH SDWK SDWH SDS SEC SEG SF SY SHT SID SNWA	South Schedule Storm Drain Sidewalk Storm Drain Manhole Safety Data Sheets Section Segment Square Foot Square Foot Square Yard Sheet Special Improvement District Southern Nevada Water	UGP UGT UP UPC UPRR USD USGS UTIL	Underground Power Underground Telephone Underwriters Laboratories Utility Pole Uniform Plumbing Code Union Pacific Railroad Uniform Standard Drawings for Public Works Construction, Offsite Improvements, Clark County Area, Nevada (Latest Edition) United States Geodetic Survey Utility (ies)
SP Spec(S) SQ IN SS SSMH SST ST STA STD STL	Authority Siphon Specification(S) Square Inch Sanitary Sewer Sanitary Sewer Manhole Stainless Steel Street Station Standard Steel	VAR VC VCP VEL VERT VG VOL W W/ W/	Varies Vertical Curve Vitrified Clay Pipe Velocity Vertical Valley Gutter Volume West With Without

WL	Water Line
WLD	Welded
WM	Water Meter
WP	Working Point
WS	Water Surface
WSP	Welded Steel Pipe
WT	Weight
WTR	Water
WV	Water Valve
YCO	Yard Cleanout
YH	Yard Hydrant
YLD	Yield

APPENDIX C – FACILITY CODES

BDTP	Blue Diamond Treatment Ponds
DBWRC	Desert Breeze Water Resource Center
FWRC	Flamingo Water Resource Center
ISTF	Indian Springs Treatment Facility
LWRC	Laughlin Water Resource Center
MVTF	Moapa Valley Treatment Facility
STP	Searchlight Treatment Ponds
LS #2	Laughlin LS 2 Lift Station, Laughlin NV
LS #3	Laughlin LS 3 Lift Station, Laughlin NV
LS 03	Lincoln Lift Station
LS 04	Pebble II Lift Station
LS 06	Quarry Lift Station
LS 08	Pecos Lift Station
LS 09	Casa Buena Lift Station
LS 11	Metro II Lift Station
LS 13	Metro I Lift Station
LS 15	Regency Lift Station
LS 18	Highland Lift Station
LS 19	North Point Lift Station
LS 21	Museum Lift Station, Overton NV
LS 22	Searchlight Lift Station, Searchlight NV
LS 25	Main Lift Station, Moapa Valley NV
LS 26	Indian Springs Lift Station, Indian Springs NV
LS 26A	Creech AFB Lift Station, Indian Springs NV
LS 27	Whitney Lift Station
LS 28	Mountains Edge Lift Station
LS 30	Paradise Springs Lift Station
LS 33	Symphony Lift Station
LS 35	Sunrise Ranch Lift Station

